
207291 ,,9/ ._

t /,. .- <_,o -- 7z_

Wing-Body Aeroelasticity
on Parallel Computers
Chansup Byun and Guru P.Guruswamy

Reprinted from

JournalofAircraft
Volume33,Number2, Pages421-428

A publication of the
American Institute of Aeronautics and Astronautics, Inc.
370 L'Enfant Promenade, SW
Washington, DC 20024-2518









JOURNAL OF AIRCRAFT

Voi. 33, No. 2, March-April 1996
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NASA Ames Research Center, Moffett Field, California 94035-1000

This article presents a procedure for computing the aeroelasticity of wing-body configurations on
multiple-instruction, multiple-data parallel computers. In this procedure, fluids are modeled using Euler
equations discretized by a finite difference method, and structures are modeled using finite element equa-
tions. The procedure is designed in such a way that each discipline can be developed and maintained

independently by using a domain decomposition approach. A parallel integration scheme is used to com-
pute aeroelastlc responses by solving the coupled fluid and structural equations concurrently while keep-
ing modularity of each discipline. The present procedure is validated by computing the aeroelastic re-
sponse of a wing and comparing with experiment. Aeroelastic computations are illustrated for a high
speed civil transport type wing-body configuration.

Introduction

HE analysis of aeroelasticity involves solving fluid and
structural equations together. Both uncoupled and coupled

methods can be used to solve problems in aeroelasticity
associated with nonlinear systems) Uncoupled methods are

less expensive but are limited to very small perturbations with

moderate nonlinearity. However, aeroelastic problems of aero-

space vehicles are often dominated by large structural defor-

mations and high flow nonlinearities. Fully coupled pro-
cedures are required to solve such aeroelasticity problems

accurately.

Such coupling procedures result in an increased level of

complication. Therefore, aeroelastic analysis has been mostly

performed by coupling advanced computational fluid dynamics

(CFD) methods with simple structural modal equations or ad-
vanced computational structural dynamics (CSD) methods

with simple flow solutions. However, these approaches can be

less accurate for the aeroelastic analysis of practical problems

such as a full aircraft configuration in transonic regime. It is

necessary to develop a fully coupled procedure utilizing ad-

vanced computational methods for both disciplines.

Recently, coupled fluid-structural interaction problems are

being studied using finite difference Euler or Navier-Stokes

flow equations and finite element structural equations of mo-
tion as demonstrated by an aeroelastic code ENSAERO. 2"3
However, applications are limited to simple structural models.

For the complicated fluid and structural models, computations

are performed in a step-by-step fashion. 4 The main reason is
that the use of detailed models for both disciplines requires

unprecedented computing speeds and amounts of memory. The

emergence of a new generation of parallel computers can pos-

sibly alleviate the restriction on the computational power.

To solve the coupled fluid-structural equations some at-

tempts have been made to solve both fluids and structures in
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a single computational domain. 5"6 The main defect of this ap-

proach is the ill-conditioned matrices associated with two
physical domains with large variations in stiffness properties.

So far, such attempts have been limited to simple two-dimen-
sional problems.

To overcome the difficulties arising from a single domain

approach, the domain decomposition approach reported in Ref.

1 has been incorporated in several advanced aeroelastic codes
such as XTRAN3S, 7 ATRANS3S, s and CAP-TSD, 9 based on

the transonic small perturbation theory. This domain decom-

position approach models fluids and structures independently.
The coupling of two disciplines is accomplished by exchang-

ing data at interfaces between fluids and structures. This allows

one to take full advantage of the numerical procedures for

individual disciplines such as finite difference methods for
fluids and finite element methods for structures. It was later

demonstrated that the same technique can be used for model-

ing the fluids with Euler/Navier-Stokes equations on moving

grids. _°'_' The accuracy of the coupling is maintained by

matching the surface grid deformation with the structural dis-

placements at the surface. This new development is incorpo-

rated in the computer code ENSAEROJ 2 Similar work has also

been reported recently in Ref. 13.

For the implementation of the ENSAERO code on parallel
computers, two types of parallel computers were considered.

These are the single-instruction, multiple-data (SIMD) and

multiple-instruction, multiple-data (MIMD) type computers.
However, MIMD type parallel computers are more suitable for

computationally efficient implicit solvers and the domain de-
composition approach used in the ENSAERO code. By de-

composing the computational domain into a number of sub-

domains and solving an implicit problem on each subdomain,

a MIMD computer can reduce the interprocessor communi-
cation required for the inversion of a large matrix resulting

from an implicit method. Furthermore, a MIMD parallel com-

puter can exploit the parallelism offered by the domain decom-

position approach for the coupled fluid and structural disci-
plines; each computational domain can be treated concurrently.

In addition, each fluid and structural algorithms can be de-

signed in a modular fashion on MIMD parallel computers.
In this work, a procedure to compute aeroelasticity on

MIMD parallel computers is described. The fluid and structural

equations on separate computational domains are coupled by
the exchange of interface data. The computational-efficiency

issues of parallel integration of both fluid and structural equa-

tions are investigated using a parallel version of ENSAERO.
The fluid and structural disciplines are modeled using finite

difference (FD) and finite element (FE) approaches, respec-

tively. The coupled equations are solved using a time integra-
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tion method with configuration-adaptive moving grids. The

procedure is designed in a modular fashion so that each com-

putational discipline can be developed independently and be
modified easily. The aeroelastic computations are demon-

strated for a high speed civil transport (HSCT) type wing-

body configuration on the Intel iPSC/860 parallel computer.

Aeroelastic Computation

The governing aeroelastic equations of motion for structures
can be written as

[M]{@}+ [C]{4}+ [K]{q}= {Z} (I)

where [M], [C], and [K] are the global mass, damping, and

stiffness matrices, respectively. {Z} is the aerodynamic force
vector corresponding to displacement vector {q}. One of the

main efforts is computing the aerodynamic force vector {Z},
which is obtained by solving the fluid flow equations. After

obtaining the aerodynamic force, aeroelastic responses can be

obtained by solving Eq. (1). A numerical integration technique
based on the constant-average-acceleration method 14 is used

to integrate the aeroelastic equations. This is an uncondition-

ally stable scheme.
A domain decomposition approach is selected to solve Eq.

(1) in conjunction with the flow equations. Each of the fluid

and structural equations is modeled in a separate computational

domain. Coupling between the fluid and structural equations
is accomplished by exchanging boundary interface data at the

end of every time step when solving Eq. (1). The advantage

of this approach is that one can select an efficient algorithm
for the fluid domain regardless of the structural domain and
vice versa. In this work, a finite difference method is selected

for fluids and a finite element method for structures.

In the fluid domain the strong conservation law form of the

Eulet: equations is used to model the flow. To solve the Euler

equations, the central-difference scheme based on the implicit
approximate factorization algorithm of Beam and Wanning Is

with modifications by Pulliam and Chaussee '6 for diagonali-
zation is use& The scheme is first-order accurate in time.

To exchange boundary interface data, it is necessary to rep-

resent the equivalent aerodynamic loads (i.e., normal stress) at

the structural nodal points and to represent the deformed struc-

tural configurations at the aerodynamic grid points. Several

numerical procedures have been developed to exchange the

necessary information between the fluid and structural do-
mainsJ 7-_°

A grid-to-element approach is used to define the location of

the points of the fluid surface grid relative to finite elements
at the surface of the structure for coupling purposes. In this

approach, every grid point of the fluid that lies on the fluid-
structural interface is identified with respect to a finite element

as shown in Fig. 1. However, in general, it is not straightfor-
ward to determine the local coordinate information of each

struglura!
1.._......--t surlaee node

_-_ _ , I J"-"V--_o

Fig. 1 Schematic diagram of the grld-to-element approach for
the fluid-structural interface: a) physical and b) computational
domains.

3-D unl-partitioning
(Fluiddomain) 2-D unl-partitionlng
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Fig. 2 Processor arrangements and message exchanges through
interprocessor and intercube communications.

grid point within a finite element. A numerical inverse map-
ping technique developed by Murti and Valliappan 2_ is used to
obtain the local coordinate information of all the interface

points of the fluid grid with respect to surface elements of the
structure. Once the location of each fluid grid point is obtained,

the nodal force vector can be easily obtained. Also, the defor-

mation of the fluid surface grid is determined by using shape
functions of the finite elements used to model the structure. In

addition, singular planes associated with the fluid grid topol-

ogy have to be moved according to the deformation of the
structural surface since the fluid grid lines from a singular

plane continue on to the structural surface smoothly. For this

purpose, a linear extrapolation is used in this study. Starting
from the deformed fluid surface grid, the field grid is generated

as explained in a later section.

ParalleUzation of ENSAERO

The domain decomposition approach enables data structures
and solution methods for fluid and structural equations to be

developed independently. Fluid and structural equations are

modeled in separate computational domains. Each domain is

mapped individually onto a group of processors, referred to as
a cube on the Intel iPSC/860, which is selected for this work.

The Intel iPSC/860 is a distributed-memory, MIMD computer

with 128 processors.
Because of coupling between the two disciplines, the inter-

face boundary data such as surface pressures and structural

displacements should be exchanged. This exchange between
the fluid and structural domains is accomplished through an

intercube communication mechanism. 22 This intercube com-

munication facility enables different processors in each cube
on the iPSC/860 to communicate directly.

The fluid flow algorithm solves the Euler equations using

three-dimensional unipartitioning of the computational do-
main. The unipartitioning scheme assigns one subdomain grid

to each of the processors. The mapping of subdomain grids to
processors is described in Fig. 2. The arrows denote bidirec-
tional data communication. There are a variety of concurrent

algorithms available for solving the system of equations for
fluids. More details about the implementation of the fluid flow

algorithms can be found in Ref. 23.
For the structural domain, regular finite element meshes are

used to model the wing and the body as plate and shell struc-

tures, respectively. This is a simple representation of the struc-
ture since the actual wing and body are built-up with sections,

i.e., internal structural members supporting the external skin.

However, for the domain decomposition approach used in this

study, the fluid-structural coupling is achieved by exchanging

the required information at the boundary interface, i.e., the
surface in this case. Therefore, this model is considered to be

adequate for the simulation of the fluid-structural coupling. It
should be noted that the data structure for the finite element

modeling developed in this study is general so that complex

structures can be easily analyzed. This approach has been ap-

plied to a wing-box finite element model, u The domain de-

composition is made by using two-dimensional unipartitioning
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as shown in Fig. 2. This type of domain decomposition enables

an efficient and simple message communication mechanism
within the structural domain.

The solver for the structural domain is based on a Jacobi-

preconditioned conjugate gradient (JPCG) algorithm on the In-

tel iPSC/860. The present JPCG algorithm is obtained by im-

plementing the diagonal preconditioner to a parallel conjugate

gradient algorithm proposed by LawY In this method, the
structural finite element model is divided into subdomains and

only local matrices related to the subdomains are assembled.

The multiplication of a matrix by a trial vector, which is the

major operation of the conjugate gradient algorithm, is per-
formed at the subdomain level. Interprocessor communication

is confined to the solution phase and the communication is

only performed between processors that have common finite
element nodes.

Aeroelastic Configuration Adaptive Grids

One of the major difficulties in solving the Euler equations

for computational aerodynamics lies in the area of grid gen-
eration. For steady flows, advanced techniques such as blocked
zonal grids 26 are currently being used. However, grid-genera-
tion techniques for aeroelastic calculations, which involve
moving components, are still in the early stages of develop-
ment. Guruswamy has developed analytical schemes for aero-

elastic configuration-adaptive dynamic grids and demonstrated
time-accurate aeroelastic responses of wing _° and wing-

body z3 configurations.
In this work, an H-O type grid topology is used (H in the

streamwise and O in the spanwise directions) for wing-body

configurations. This type of grid topology is more suitable for
general wing-body configurations. It gives better surface grid
resolution on the body when compared to the C-H grid to-

pology used in Ref. 10. The grid is designed so that flow
phenomena such as shock waves, vortices, etc., and their

movement around the wing-body configurations are accu-

rately simulated. The base surface grid is prepared using the
S3D code. 27 From the surface grid, the field grid is generated

using an analytical approach. In this approach, grid lines in
the radial direction away from the surface are generated line-

by-line in the planes normal to the longitudinal body axis.
First, the radial lines are generated approximately normal to

the surface. Then, the new grid lines in the azimuthal direction

are generated in such a way that the spacing between lines are

exponentially increased away from the surface.
This method can be used for generating the base field grid

of the rigid configuration and the aeroelastically deformed field

grid of the flexible configuration. For aeroelastic analysis, the

displacements at the structural nodes are computed first using

Eq. (1). Then the displacements are mapped onto the interface

grid points by the grid-to-element approach mentioned earlier.

Finally, the field grid is analytically regenerated starting from
the deformed surface grid.

Parallelization of this approach is accomplished using the

unipartitioning scheme in the fluid domain. The present ap-

proach for aeroelastic configuration-adaptive grids only re-

quires the deformed surface grid and the coefficients used in

the exponential function to define the grid spacing between

lines away from the surface.. The interprocessor communica-
tion needed to generate the deformed field grid within the fluid
domain is minimal and takes place only between processors

assigned along the surface-normal direction. Each of the pro-

cessors can generate the assigned subdomain grid of the de-

formed field grid concurrently once information about the local

surface grid has been broadcast.
The grid is generated at every time step based on the aero-

elastically deformed position of the structure. First, the dis-

placements at the points of the fluid surface grid on the struc-

ture are obtained on the processors assigned to the structural

domain. This is done by using the local coordinate information

and the finite element shape functions. The displacements at

the points of the fluid surface grid are sent only to the appro-
priate processors on the fluid domain that contain the surface

grid points. Then, a linear extrapolation is used to move the

remaining points on singular planes of the fluid surface grid

according to the structural deformation of the adjacent points
on the structural surface. At this stage, the deformed surface

grid is distributed only to processors of the fluid domain that

contain the local surface grid points. It should be noted that
the deformed surface grid residing on each processor of the

fluid domain is only the part of the whole surface grid ac-

cording to the grid partitioning. If two or more processors are
assigned along the surface-normal direction, each of the de-

formed surface partitions is sent to processors that have the

same partitioning indices of the surface grid. Finally, all pro-

cessors of the fluid domain generate their subdomain of the

deformed field grid concurrently.

Parallel Integration for Coupled Domains

In a serial computer, the integration of both fluid and struc-

tural equations is performed one after the other in a sequential

nature. Figure 3a shows the sequential integration scheme im-

plemented on MIMD parallel computers. In the sequential in-

tegration scheme, the fluid domain has to wait to proceed to

the next time step until it receives information about structural
deformations. The structural domain also has to wait for sur-

a)

v

n_d m

t'ide Ume

Rec_ su_

pressure

b)

Fig. 3 Flow diagrams for a) sequential and b) parallel integra-
tion schemes.
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face pressure data. Both cubes have their own idle times wait-

ing for data communications. The computational time per in-

tegration step will be determined by times spent on both

domains when a sequential integration scheme is used. To

avoid the idle times between the fluid and structural compu-
tations all processors can be used to solve the fluid and struc-

tural equations sequentially as done in serial computations. But

this approach requires more memory per processor and two
disciplines have to be implemented in a single program. As a

result, modularity of each algorithm for individual disciplines

will have to be sacrificed to a significant degree. In addition,
this approach will be less efficient as increasing the number

of processors because the problem is not linearly scaled.

However, while keeping modularity of each discipline, com-

putations can be done more efficiently on MIMD parallel com-

puters by executing the integration of both fluid and structural

equations concurrently, as shown in Fig. 3b. In the proposed
parallel integration scheme, both domains start computations

independently and one of the solvers waits until the other fin-

ishes its calculation. Then they exchange the required data with

each other for the next time step. By doing so, the parallel

integration can reduce the idle time since only one cube (the

fastes0 will have to wait. This integration scheme exploits the

parallelism offered by the domain decomposition approach to

solve the coupled fluid-structural interaction problems.

Results

Wing Aeroelasticity

To validate the present development, computations were
done for a clipped delta wing configuration, zs The transonic
flutter charact6dstics Of this wing are available from wind-

tunnel tests for various flow parameters. For this computation,

the flowfield is discretized using a C-H grid topology of size

151 × 30 x 25. The fluid grid is assigned to 32 processors
on the iPSC/860. The processors are arranged as a three-di-
mensional mesh of eight processors in the chordwise direction

and two processors in both the spanwise and surface-normal
directions.

A 20 degrees-of-freedom (DOF) ANS4 shell :9 element was

used for the finite element modeling of the structure. Since the
wing model used in the experiment was built by using an

aluminum-alloy flat plate insert covered with a light, flexible
material to obtain the desired airfoil shape, in this computation,

the wing is modeled aS a plate. Considering the wing model

used in the experiment, variation of mass density is allowed

along the chordwise and spanwise directions. But the thickness
of the finite element model is kept constant to better match the

computed natural frequencies with those obtained from the ex-

periment. This is based on the assumptions that the stiffness

of the wing is dominated by an aluminum-alloy insert and

that the mass distribution of the wing is significantly changed

due to plastic foams covering the aluminum-alloy insert. For

the structures pan of the computation, processors were as-
signed as a two-dimensional mesh of two processors in the

chordwise and spanwise directions, respectively, on the iPSC/
860.

To compare sequential and parallel integration schemes the

aeroelastic responses were obtained using both schemes on the
iPSC/860. The results are presented in Fig. 4. The responses

were obtained for 0-deg angle of attack (AOA) at M, = 0.854

and a given dynamic pressure of 1.0 psi. The two results are

in excellent agreement. When the domain decomposition ap-

proach is used to solve the coupled fluid-structural equations,

the parallel integration scheme can reduce the computational

time per integration step. For 256 finite elements (1360 DOF)

with four processors on the structural domain, the computa-

tional times per integration step are 6.22 and 3.33 s by using

sequential and parallel integration schemes, respectively. A

speed-up factor of 1.87 is achieved by using the parallel in-
tegration scheme. The parallel integration scheme enables con-
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Fig. 4 Aeroelastic responses obtained by using sequential and
parallel integration schemes (M. = 0.854, cx = 0 deg, and P = 1.0
psi).
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Fig. 5 Aeroelastic responses of a clipped delta wing obtained by
solving finite difference Euler equations and finite element struc-
tural equations of motion (Mr= = 0.854 and _ = 0 deg).

current solution of the coupled fluid and structural equations

without causing any significant inaccuracy or instability prob-
lems. The computation time per integration step required is

determined by the computational domain that requires most

time per integration step. This parallel integration is one of the

advantages of using MIMD computers for multidiseiplinary

analysis using the domain decomposition approach.
Aeroelastic responses were also computed for various other

dynamic pressures to predict the flutter dynamic pressure and

compare with the experiment. Figure 5 shows the stable, near

neutrally stable, and unstable responses of wing tip displace-

ments at the leading edge for dynamic pressures of 0.80, 0.85,

and 0.90 psi, respectively. From the responses shown in Fig.

5, the interpolated dynamic pressure for the neutrally stable
condition is 0.84 psi. It is noted that the experimental dynamic

pressure measured at the neutrally stable condition was 0.91

psi. 2s Considering the lack of experimental pressure data on

the wing and the error involved in modeling the wing since
there was no data available for the material properties of the

plastic foam covered the aluminum insert to form airfoil shape,
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the computational result is deemed an acceptable prediction of
the flutter dynamic pressure.

Wing-Body Aeroelasticity

The main purpose of this work is to compute the aeroelas-
tic responses of fully flexible wing-body configurations on
MIMD parallel computers. For this purpose, a general-purpose
moving-grid capability is required. In the present work, an
analytical scheme 3 that will generate a moving H-O grid is

implemented on the iPSC/860. This scheme generates the field
grid according to the surface grid deformation. For demon-
stration purposes, an HSCT type wing-body configuration
(1807 model) is selected. Figure 6 shows the baseline grid.
The size of the baseline grid is 95 × 89 × 30. However, it
should be noted that the technology developed in this work

for moving grid is independent of grid size. The grid generated
by the code when the structure is deformed is shown in Fig.
7. Note that the singular planes upstream of the leading edge

and downstream of the trailing edge are deformed according
to the deformed shape of the configuration.

To verify the coupling of the surface movement with the
grid movement, dynamic aeroelastic responses are obtained for
the above wing-body configuration. Both the body and wing
are allowed to be flexible. The wing-body configuration is
modeled as a plate/shell structure using 308 elements. The

Fig. 8 Finite element modeling of the wing-body configuration.
Total number of elements -- 308; total number of nodes = 351;
boundary conditions = symmetry conditions at top and bottom of
the body and fix all DOFs along bottom of midbody; total number
of equations = 1641.
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Fig. 6 HSCT type wing-body configuration with portions of sur-
face and field physical grids. structural model does not have internal structures such as ribs

or spars. However, this model is considered to be adequate for

the purpose of this study. The finite element layout is shown
in Fig. 8. The structural properties are chosen so that the struc-
ture can demonstrate aeroelastic responses for a given flow

condition. Symmetric boundary conditions are applied at the
top and bottom of the body symmetry lines. AI! DOF are fixed

along the bottom symmetry line of the midbody. This results
in a total of 1641 DOF for the structure,

Aeroelastic computations are done on the flexible wing-

body configuration by directly coupling the pressures com-
puted solving the Euler equations with the FE structural equa-
tions of motion. A demonstration calculation is done for a dy-

namic aeroelastic case when the configuration is ramping up

from 0- to 5-deg AOA at M, = 2.1 as shown in Fig. 9. This
ramping motion is started from the steady state of 4.75-deg

AOA and M® = 2.1. It is assumed that the wing root is 300

in. long and aeroelastic computations are done at a dynamic

pressure of 3.0 psi. The configuration is pitched up about the

axis perpendicular to the symmetry plane and located at the

leading edge of the wing root. Starting from the steady-state
solution, the configuration is pitched up at a rate of 0.0015

deg per time step. At the end of each time step a new field



426 BYUN AND GURUSWAMY

grid is generated that conforms to the deformed surface. Figure

9 shows the response of the leading edge of the tip section. It

is noted that the wing continues to oscillate after the ramp

motion has stopped. This is because the inertial force on the

structure is still dominating the aeroelastic motion.

For the purpose of flutter speed prediction, the aeroelastic

configuration adaptive grid should be able to handle large
structural deformations that cause severe distortions of the

original fluid grid. The capability of the current grid deforming

scheme to handle a large deflection is demonstrated in Fig. 10.

The computations are started from the steady-state solution at

4.75-deg AOA and M, = 2.1 with an initial motion of the
structure due to uniform accelerations to simulate gust loads.

To produce a large deflection a dynamic pressure of 15.0 psi

is applied. The wingtip deflection increased up to about 13%
of the root chord length in the beginning and then decreased

gradually due to the aerodynamic damping effect. It shows that

the response approaches to a steady state that is due to the

aerodynamic force at the flight configuration. The current

aeroelastically deforming grid scheme could generate de-

formed fluid grids following structural deformations without

failure. Including the data exchange between fluid and struc-
tural domains, the current scheme requires about 12% of the

computational time per each integration step.

Performance

To measure the performance of the structural domain on the
Intel iPSC/860, the floating-point operations (FLOP) rate on

the iPSC/860 is calculated by comparing time per integration

step on the iPSC/860 to the time on the Y-MP using a single

processor. Operation counts from the Cray Hardware Perfor-
mance Monitor are used. A single processor of the iPSC/860

achieve the Y-MP equivalent of 4.2 Mflops, while the corre-

sponding rate is about 77 Mflops on a single Y-MP processor.
The Intel rate is about 7% of the peak performance of a single

processor on the iPSC/860. Similar performance was reported

by Ryan and Weeratunga z_ for the fluid domain. All perfor-

mance data reported are for 64-bit arithmetic.

The performance of the structural domain in parallel EN-
SAERO has been measured over a wide range of processor

numbers and problem sizes as shown in Fig. 11. The speed up
relative to the Y-MP is defined as

speed up = tc,y/tt,,,_

where to, y and t],,,_ are the computational time per integration

,s I ,"". ii _...,_._. I
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Fig. 10 Demonstration of aeroeiastlc configuration adaptive grid
scheme for a large deformation of an ttSCT type wing-My (M.
= 2.1, a = 4.75 deg, and P = 15.0 psi).
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Fig. 11 Computational performance of the structural domain in

ENSAERO with various problem sizes and domain decomposi-

tions on the Intel iPSC/860.
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• 113,250 GRID POINTS (FLUIO)
• 10,560 DOF (STRUCTURE)
• ONLY JPCG SOLVER IS USED FOR

STRUCTURE ON THE iPSC/860

CPU 32 48 64 80 96
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Overall computational performance of ENSAERO on the
Cray Y-MP and the lntel iPSC/860.

step measured on the Y-MP and the iPSC/860, respectively.

Only a single processor is used to measure tc, y on the Y-MP.

The open and filled symbols denote the domain decomposition

approach that results in the minimum and maximum band-
widths of the stiffness matrix of each subdomain for a given

number of processors, respectively.

For the case of 1360 DOF, the computational time per in-

tegration step for 64 processors on the iPSC/860 is close to

that on the Y-ME However, by increasing the size of the prob-

lem (10,560 and 20,800 DOF), 16 processors of the iPSC/860
achieve about the same speed as a single Y-MP processor. It

is evident that the JPCG solver on the iPSC/860 performs bet-

ter as the size of the problem increases. For the case of 20,800

DOF, the relative speed up achieved is about 8 when 64 pro-
eessors are in use on the iPSC/860.

The overall performance of ENSAERO on both the Y-MP
and the iPSC/860 is shown inFig. 12_or the case of 113,250

grid points for the fluid domain and 10,560 DOF for the struc-

tural domain. In this computation, 32 processors are assigned
to the fluid domain and 16-64 processors to the structural

domain. Both the skyline reduction and JPCG solvers are com-

pared on the Y-MP, whereas only the JPCG solver is used for

the structural domain. The height of each column stands for

the time per integration step. Each column is divided into times
spent for the fluid domain, the structural domain, and for idle/
intercube communication.

For the structural domain, it is evident that the skyline re-

duction solver outperforms the JPCG solver on the Y-ME
However, the JPCG solver is first implemented on the iPSC/

860. Direct solvers are still under development on parallel

computers. The main purpose of this work is to compute aero-
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elastic responses of aerospace vehicles on MIMD parallel com-
puters. Therefore, the well-developed J'PCG solver is selected.
Because of the domain decomposition approach used in this
work, the JPCG solver can be easily replaced with more effi-
cient solvers when they become available.

When using 32 processors for the structural domain, the
JPCG solver on the iPSC/860 achieves the performance ofthe
skyline reduction solver on the Y-MP. The time per integration
step of ENSAERO using 96 processors in total on the iPSC/
860 is about 60% of that obtained using the skyline reduction
solver with a single processor on the Y-MP. This resuk is based
on the computation time for the case of 113,250 fluid grid
points and 10,560 structural equations. It should be noted that
the structural domain determined the time per integration step
for this particular problem on the iPSC./860. Most of the time
on the fluid domain was spent waiting for the interface bound-
ary data. However, due to the domain decomposition approach,
it is possible to balance the computational time between the
two domains by assigning more processors to the structural
domain.

Conclusions

A parallel wing-body version of a multidisciplinary code,
ENSAERO, has been developed on the Intel iPSC/860. A
domain decomposition approach was used to enable algorithms
for the fluid and structural disciplines to be developed and
maintained independently. This approach provides an efficient
and effective environment to researchers. A researcher work-
ing in the fluid or the structural discipline can develop his
own algorithms independent of the others. The only thing to
be done together is coupling of the disciplines. Since coupling
of the disciplines is achieved by exchanging boundary data
through an intercube communication mechanism that does not
interfere with interprocessor communication within a cube,
coupling should not cause any problem. This makes it easy for
each discipline to incorporate and develop new algorithms
or data structures without interferences. For example, the
simple structural model has been replaced with a more realistic
model, such as a wing-box structure for the wing configu-
rations. _

The performance of the structural domain is far behind that
of the fluid domain. This is due to the less desirable perfor-
mance of the JI_G algorithm. It is noted that direct solvers
are still in the early stages of development. However, since the
procedure developed here allows for one domain to select al-
gorithms independent of others, the JPCG algorithm can be
easily replaced with more efficient algorithms when available.
Although the solver for the structure is not efficient on a sedal
computer, reasonable computational speed and a good load
balance can be achieved by assigning more processors to the
structural domain. The overall time per integration step of par-
allel ENSAERO using 96 processors on the iPSC/860 is re-
duced to about 60% of the best time obtained on a single Y-
MP processor for the particular problem considered. This
shows the advantage of using the domain decomposition ap-
proach for the multidisciplinary analysis on MIMD parallel
computers.

The parallel integration scheme enables the combination of
advanced CFD and CSD technologies with minimal increase
in computational time per integration step while keeping mod-
ularity of each discipline. The time per integration step is
solely determined by the domain that requires most computa-
tional time on the iPSC/860. This parallel integration is one
of the advantages of using MIMD computers for multidisci-
plinary analysis. The procedure developed in this research will
provide an efficient tool for solving aeroelastic problems of
complete aerospace vehicle configurations on MIMD com-
puters.
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